Search results for " 22E46"

showing 3 items of 3 documents

The Coble Quadric

2023

Given a smooth genus three curve $C$, the moduli space of rank two stable vector bundles on C with trivial determinant embeds in $\mathbb{P}^8$ as a hypersurface whose singular locus is the Kummer threefold of $C$; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric fourform in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover SU$_C(2, L)$, the moduli space of rank two stable vector bundles on C with fixed determinant of odd degree L, as a subvariety of $G(2, 8)$. In fact, each point $p \in C$ defines a natural embedding of SU$_C(2, \mathca…

Coble hypersurfacesMathematics - Algebraic Geometrydegeneracy loci[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]FOS: Mathematics14h60 22E46Moduli spaces of stable bundlessubvarieties of Grassmannians[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Hecke linesself-dual hypersurfacesAlgebraic Geometry (math.AG)
researchProduct

Quantum Toda Lattice: a Challenge for Representation Theory

2021

Quantum Toda lattice may solved by means of the Representation Theory of semisimple Lie groups, or alternatively by using the technique of the Quantum Inverse Scattering Method. A comparison of the two approaches, which is the purpose of the present review article, sheds a new light on Representation Theory and leads to a number of challenging questions.

FOS: MathematicsFOS: Physical sciences16T25 17B35 17B37 22E46 33B15 33C15Mathematical Physics (math-ph)[MATH] Mathematics [math]Representation Theory (math.RT)Mathematics - Representation TheoryMathematical PhysicsProceedings of Symposia in Pure Mathematics
researchProduct

Quantum moment maps and invariants for G-invariant star products

2002

We study a quantum moment map and propose an invariant for $G$-invariant star products on a $G$-transitive symplectic manifold. We start by describing a new method to construct a quantum moment map for $G$-invariant star products of Fedosov type. We use it to obtain an invariant that is invariant under $G$-equivalence. In the last section we give two simple examples of such invariants, which involve non-classical terms and provide new insights into the classification of $G$-invariant star products.

Pure mathematicsStatistical and Nonlinear Physics37Kxx22E7Mathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)16S3022E46Invariant (mathematics)16S8916S89; 16S30; 37Kxx; 22E46; 22E7Moment mapQuantumMathematical PhysicsSymplectic manifoldMathematics
researchProduct